PROGRESS IN NATURAL SCIENCE

P systems with array objects and array rewriting rules

K.G. Subramanian'*, R. Saravanan’, M. Geethalakshmi®,
P. Helen Chandra® and M. Margenstern®

(1. Department of Computer Science, Sri Muthukumaran Institute of Technology, Chennai 600 069, India; 2. Department of Mathe-
matics, Bharath Institute of Higher Education and Research, Chennai 600 073, India; 3. Department of Mathematics, Dr. MGR Janaki
College, Adayar, Chennai, India; 4. Department of Mathematics, Jayaraj Annapackiam College for Women Periyakulam 625 601, India;
5. LITA, Universite Paul Verlaine-Metz, lle du Saulcy, 57045 Metz Cedex, France)

Abstract
grammars. Puzzle grammars were introduced by us for generating connected picture arrays in the two-dimensional plane, motivated by the
problem of tiling the plane. On the other hand, incorporating into arrays the developmental type of generation used in the well-known bio-
logically motivated L systems, Siromoney and Siromoney proposed a very general rectangular array generating model, called extended con-
trolled tabled L array system (ECTLAS). In this paper we introduce two variations of the array P system, called BPG array P system and
parallel array P system. The former has in the regions array objects and basic puzzle grammar rules (BPG), which are a specific kind of

Array P systems were introduced by P&un Gh. which is linking the two areas of membrane computing and picture

puzzle grammar rules. In the latter, the regions have rectangular array objects and tables of context-free rules. We examine these two

Vol. 17, No. 4, April 2007

types of P systems for their array generative power.

Keywords: membrane computing, P systems, array grammars.

The area of membrane computing was initiated
(1} introducing a new computability model,
now called as P system, which is a distributed, high-
ly parallel theoretical computing model, based on the
membrane structure and the behaviour of the living
cells. Among a variety of applications of this model,
the problem of handling array languages using P sys-
tems has been considered by Ceterchi et al. 2} by in-

by Paun

troducing array-rewriting P systems and thus linking
the two areas of membrane computing and picture
grammars.

On the other hand, in the study of generation
and description of picture patterns considered as con-
nected digitized, finite arrays of symbols, syntactic
techniques for pattern recognition and image analysis
have played a significant role on account of their
structure-handling ability. Adapting the techniques of
formal string language theory, various types of pic-
ture or array grammars have been introduced and in-

3.4 Puzzle grammars introduced in [5]

vestigated
are array generating two-dimensional grammars moti-
vated by the problem of tiling the plane. A subclass
called basic puzzle grammars was introduced by Sub-
ramanian et al. %), Another very general rectangular
array generating model, called extended controlled
tabled L array system (ECTI.AS) was proposed by

[7]

Siromoney and Siromoney''’, incorporating into ar-

rays the developmental type of generation used in the
well-known biologically motivated L-systems. In this
nore we introduce two kinds of array P systems for
generation of pictures which are arrays of symbols. In
the first kind of array P systems we take the objects
in the regions as arrays and rules to be basic puzzle
grammar rules. We call these P systems as BPG array
P systems. In the second kind, we take the objects in
the regions as rectangular arrays. Tables of context-
free rules are in the regions, with rewriting of a rect-
angular array being done at a time by rules in a single
table, as in a ECTLA system of [7]. We call the re-
sulting P system as parallel array P system. We ex-
amine these two types of picture array generating P
systems for their generative power. Preliminary ver-
sions of these two systems were reported in [8,9].

1 Preliminaries

Let X be a finite alphabet. A word or string w
over T is a sequence of symbols from 3. The set of
all words over X, including the empty word A with
no symbols, is denoted by 3. An array over Z con-
sists of finitely many symbols from X placed at the
points of Z ?(the two-dimensional plane), and the
points of the plane not marked with symbols of I are
assumed to have the blank symbol # & I. We will
pictorially represent the arrays, indicating their non
blank pixels, whenever possible. The set of all arrays

* To whom correspondence should be addressed. E-mail: kgsmanil948@yahoo. com

480 www. tandf. co. uk/journals

Progress in Natural Science Vol.17 No.4 2007

over X will be denoted by = *2. An array over |a}
describing the picture token T is shown in Fig. 1.

aaqaaaaaaada
a
a
a

a

Fig. 1. An array describing picture token T.

An array, in particular, can be rectangular. A
rectangular m X n array M over 3 is of the form
L | TS P
M= .

a a

ml mn

where each a; €2, 1<<iskm, 1<j<<n. The set of

all rectangular arrays over 3 is denoted by 3",
which includes the empty array A.

We now recall the definition of basic puzzle
grammars introduced in [6]. These grammars consti-
tute a special class of puzzle grammars defined in [5]
for generation of arrays non-rectangular or rectangu-
lar. We refer to [5] for notions of puzzle grammars
and to [3,4] for array grammars. For notions of for-
mal language theory we refer to [10].

Definition 1. A basic puzzle grammar (BPG) is

a structure G = (N, T, R, S) where N and T are fi-
nite sets of symbols; NN T = @; elements of N are
called non-terminals and elements of T, terminals;
S & N is the start symbol or the axiom; R consists of
rules of the following forms:
A= @B, A—-a®), A~-B®, A—>Ba
@ a B @

, A— , A— , A— s
B @ @ a
where A, BE N and a € T. We may omit the circle
in the rule with a single a on the right side.

A —

. Derivations begin with S written in a unit cell in
the two-dimensional plane, with all the other cells
containing the blank symbol #, notin NUT. Ina
derivation step, denoted by =, a non-terminal A in a
cell is replaced by the right-hand member of a rule
whose left-hand side is A. In this replacement, the
circled symbol of the right-hand side of the rule used
occupies the cell of the replaced symbol and the non-
circled symbol of the right side occupies the cell to the
right or the left or above or below the cell of the re-
placed symbol depending on the type of the rule used.
The replacement is possible only if the cell to be filled

A—>@

in by the non-circled symbol contains a blank symbol.

The basic puzzle language (BPL) generated by
the BPG G, denoted by L(G), is the set of connect-
ed finite arrays over T, derivable in one or more steps

from the axiom.
We denote the family of BPL by L. (BPL).

Remark 1. A
(RAG)' 12 consists of array productions of the fol-

regular array grammar

lowing forms:

A a # B
—’B’ A - a
These are in fact included in the productions of a

A# —-aB, #A — Ba, , A—>a

" BPG. For example the equivalent of A #—>4B is

A— @B
We denote by L(RAL) the family of the regular ar-
ray languages (RAL) generated by RAGs. It is
known that L (RAL)CL(BPL)'!.

We next recall extended controlled tabled L ar-
ray systems (ECTLAS) introduced in [7] for gener-
ating rectangular arrays. These systems were intro-
duced in [7] incorporating the Lindenmayer-like par-
allel rewriting in arrays. Here we restrict ourselves to
ECTOLAS where tables of context-free rules only are
used.

Definition 2. An extended, controlled tabled 0L
array system (ECT0LAS) is a 5-tuple G=(V, T,
#£,C,S, #) where V is a finite nonempty set (the
alphabet of G); TC V is the terminal or target al-
phabet of G; # is a finite set of tables, {¢,,¢,, ",
t,t, and each ¢;,,i =1, k, is a left, right, up, or
down table consisting respectively, of a finite set of
left, right, up, or down rules only. The rules within
a table are context-free in nature but all right hand
sides of rules within the same table are of the same
length; C is a control language over #; S& V is the
start rectangular array; # is an element not in V
(the marker of G).

et G = (V, T, #, C, S, #) be an

ECTOLAS. Let

i 7 Qia-1y Qg

M, = : - D,
At e am(n*l) A ppn
an T Ayen @iy

M2 _ . .
Q1 " Up(n-1) @y

Progress in Natural Science Vol.17 No.4 2007 www. tandf. co. uk/journals 481

with a;in V and w;, in V', i=1,,m,j=1,",
n. We say that M, directly derives M, (by a right
table R in #), denoted by M,="M,, if M, is ob-
tained by applying in parallel the rules in a right table
to all the symbols in the rightmost column of M.
Similarly we define >k U 5P corresponding to a
left, up, or down table. We write M,= M, if either

M1=>RM2, or M, =>LM2, or M13UM2, or M,
=>PM,. We write My,=" M iff there exists a se-
quence of derivations M, ="1 M, =>f2 .. =>PuM =
M, such that p,p,p,, €C.

A setM(G) of arrays is called an extended con-
trolled table 0L array language (ECTOLAL) iff
there exists an extended controlled table 0L array
system G such that M (G)={M|S=>"M, M€
T""}. The family of extended controlled tabled 0L
array languages is denoted by L(ECTOLAL).

In particular,

1. if V=T and S is a rectangular array M(the
axiom), G is a controlled tabled 0L array system;

2.if C=#", then there is no control and the
order of application of the tables is arbitrary; G is
then an extended tabled 0L array system; G is a
tabled 0L array system if in addition V=T .

In these cases the corresponding family of lan-
guages is respectively denoted by L (CTOLAL),
L(ETOLAL), L(TOLAL).

2 Array rewriting P systems with BPG rules

Array P systems were introduced in [2] as an
extension from the string rewriting P systems. In
these systems arrays are placed in the regions of the
system and they evolve by means of array-rewriting
rules. In particular, the rules can be regular array
rewriting rules. We now consider a variation of the
array P systems of degree m by taking the rules in
the membranes as basic puzzle grammar rules. We
call the resulting array P system as BPG array P sys-
tem of degree m (EAP, (BPG)) (E refers to the
fact that the system is extended with a terminal al-
phabet). When the rules in the membranes are taken
as regular array grammar rules, we call the array P
system as REG array P system of degree m
(EAP,,(REGA)). The language

classes of array P systems with regular and BPG rules

corresponding

are respectively denoted by L (EAP, (BPG)),
L(EAP, (REGA)).

Definition 3. A BPG array P System of degree

m (=1) is a contruct
on=(v,T,#,u,F,,F,,R,~,R,.,1y),

where V is the total alphabet, T& V is the terminal
alphabet, # is the blank symbol, x is a membrane
structure with m membranes labeled in a one-to-one
way with 1,2, --*, m; F,, -+, F are finite sets of ar-
rays over V initially associated with the m regions of
#3 Ry, -+, R, are finite sets of BPG rules over VU
T associated with the m regions of u; the rules have
attached targets, here, out, in (in general, here is
omitted) ; finally, i, is the label of an elementary

membrane of g (the output membrane).

A computation in a BPG array P system is de-
fined in the same way as in a string rewriting P sys-
tem!!) with the successful computations being the
halting ones; each array from each region of the sys-
tem, which can be rewritten by a rule associated with
that region (membrane), should be rewritten; this
means that one rule is applied (the rewriting is se-
quential at the level of arrays) ; The array obtained by
rewriting is placed in the region indicated by the tar-
get associated with the rule used; “here” means that
the array remains in the same region, “out” means
that the array exits the current membrane—thus, if
the rewriting was done in the skin membrane, then it
can exit the system; arrays leaving the system are
“lost” in the environment, and “in” means that the
array is immediately sent to one of the directly lower
membranes, non-deterministically chosen if several
exist (if no internal membrane exists, then a rule
with the target indication in cannot be used).

A computation is successful only if it stops,i.e.,
if a configuration is reached where no rule can be ap-
plied to the existing arrays. The result of a halting
computation consists of the arrays composed only of
symbols from T placed in the membrane with label i,
in the halting configuration.

The set of all such arrays computed (we also say
generated) by a system II is denoted by AL (II).
The family of all array languages AL (II) generated
by systems II as above, with at most m membranes,
is denoted by FAP, (BPG). The regular array

rewriting (REGA) rules are also BPG rules. So
when REGA rules alone are used in the regions, we

482 www . tandf. co. uk/journals Progress in Natural Science Vol.17 No.4 2007

call the family as EAP, (REGA).
By definition it follows that

1. EAP,(X)ZEAP, ,,(X) for X€ {REGA,
BPG}

2. EAP,,(REGA)ZEAP, (BPG)
Theorem 1. (i) L (RAL)CEAP,(REGA)
(ii) L(BPL)CEAP,(BPG)

(iii) EAP,(REGA)CEAP,(BPG)

(iv) EAP,(REGA)CEAP,(REGA)

(v) EAP,(BPG)CEAP,(BPG)

(vi) EAP,(REGA)CEAP,(BPG)

Proof. The inclusions in (i)—(wvi) are clear
from the definitions.

The proper inclusion (i) can be seen as follows:
Let

I, = {A,B,ai,iaf,#,[l]l,{AEA},Rl,l)
B a

Rl :{#AaAa,A#_’aAa
A-—>a,B—al

B’

The regular array P System II, generates a lan-
guage L, consisting of arrays in the shape of token T
but not necessarily with equal “arms”. But a regular
array grammar cannot generate L, as the rewriting in
a regular array grammar, when it reaches the “junc-
tion” in a T shaped array can either proceed horizon-
tally (left or right) or vertically (down) and thus will
fail to produce the third arm. The proper inclusion in
(ii) can be seen similarly, by considering a language
L, consisting of arrays in the shape of token T, not
necessarily of equal “arms” but with “protrusions” i.
e., with an extra symbol a above every alternate
symbol “a”
the T shaped array. The system II, can be modified

in the horizontal left and right “arms” in

to take care of this feature by having suitable BPG

rules and having the initial array in the following
a

form: A a A. Again BPG rules will fail to produce
B

the “third arm”, for a reason similar to the case of

REGA rules. The proper inclusion in (iii) follows by

noting that the language I, described above is in

EAP [(BPG) but regular array rewriting rules alone

are not enough to produce the “protrusions”. The
proper inclusion in (iv) can be seen as follows:

I, =({A,B,at, lat, #,[1[2]2]1,

A
{ B},@,RI,RZ,Z)

a

j: »f(in)}

R, ={B# —> aB(out),B# — aC,
C—+a,A—al

-]

The non-terminals A and B take care of growing
the vertical arm (in the skin membrane) and the hori-
zontal arm (in membrane 2), step by step; at any
time the computation stops in membrane 2 after using
the rule A—>a, B# —aC and C—>a, in any order.
In case after terminating A, the array is sent out to
skin membrane by the application of B #—aB, then
it gets stuck in the skin membrane. The L shaped ar-
rays over |a} with equal “arms”, collected in mem-
brane 2 constitute the language generated. But this
picture language L, cannot be generated by a regular
array grammar in just a single membrane, as the rules
of a regular array grammar cannot maintain equal
growth between horizontal and vertical “arms”.

The proper inclusion in (v) can be seen as fol-
lows: The array language L, consisting of picture ar-
rays (one of these is shown in Fig. 2) with equal
“arms” and “single protrusions” to the left of the ver-
tical line of =’s and below the horizontal line if x's, is
generated by the following array P system with basic
puzzle grammar rules.

0, ={14.B,¢.D.E.F,zl,[[, L1,

A
xxB, Q,Rl,RZ,Z)
x

C
R, Z{A — @ (in),C > z @) (here),

A
D—*@(in)}

R, ={B—> @E (out), E -~ F)

X

F— @B(out),F > @QU,A > z,U >z

Progress in Natural Science Vol.17 No.4 2007 www. tandf. co. uk/journals 483

X
T T
X
TIrxrxrx
X I

Fig. 2. Array with equal “arms” and “protrusions” .

But this language cannot be generated by BPG rules
in just a single membrane as these rules cannot main-
tain equal growth between the horizontal and vertical
directions.

The proper inclusion in (vi) is due to the fact
that REGA rules cannot produce the “protrusions” as
in the arrays of L,.

3 Array rewriting parallel P systems

We now consider another variation of the array P
systems introduced in [2]. We take the objects in
this array P System of [2] as rectangular arrays. Also
we take tables of context free rules of the form ¢ —a,
a€ V™, for an alphabet V, in the regions of the P
system with the application of a table being done as in
a ECTOLAS!”). We call the resulting array P system
as parallel array P system (PAPS).

Definition 4. A parallel array P system (PAPS)
1s a construct
I=(V,T,%,u,F,,F,, T, T, i),
where V is the total alphabet, TSV is the terminal
alphabet, p is a membrane structure with m mem-
branes labelled in a one to one way with 1,2, -, m;
Fy, -, F,, are finite sets of rectangular arrays over V

associated with the m regions of p; J,,+, 7, asso-
ciated with m regions of p are finite sets of left,
right, up, down tables of context free rules over V of
the form a—e, a €V, « € V" ; all a’s have the
same length in a table. The tables have attached tar-
gets here, out, in; i, is the label of an elementary

membrane of g (output membrane).

When a set T is distinguished, we speak about
an extended PAP system; when V = T we have a
non-extended system.

A computation in a PAP system is defined in the
same way as in a string rewriting P system with the
successful computations being the halting ones: each
rectangular array, from each region of the system,
which can be rewritten by a table of rules, rewriting
being done as in a ECTOLAS!7! associated with that

region (membrane), should be rewritten; this means
that one table is applied and the rectangular array ob-
tained by rewriting is placed in the region indicated
by the target associated with the table used (here
means that the rectangular array remains in the same
region, out means that the rectangular array exits the
current membrane-thus, if the rewriting was done in
the skin membrane, then it can exit the system; rect-
angular arrays leaving the system are “lost” in the en-
vironment, and in means that the rectangular array is
immediately sent to one of the directly lower mem-
branes, nondeterministically chosen if several exist.
If no internal membrane exists, then a table with the
target indication in cannot be used.

A computation is successful only if it stops, i.e.,
if a configuration is reached where no table can be ap-
plied to the existing rectangular arrays. The result of
a halting computation consists of the rectangular ar-
rays composed only of symbols from T placed in the
membrane with label i, in the halting configuration.
The set of all such rectangular arrays computed by a
system II is denoted by RAL (IT). The family of all
array languages RAL (II') generated by systems IT as
above, with at most m membranes, is denoted by
EPAP,; if non-extended systems are considered,

then we write PAP, .
By definition, the following inclusions are clear.
(i) PAP,SPAP, ,, for m>1
(ii) EPAP,, “EPAP,, ., for m>1
(iii) PAP,, S EPAP, for m>1
(iv) L(TOLAL)Z PAP,

(v) L(ETOLAL)SEPAP,
Theorem 2. (i) PAP,\ L(TOLAL)# @

(ii) EPAPs\ L(ETOLAL)# @

Proof. (i) Let I;=(V, V,[;[,(515:1:1,, M,,
$,4,9,,9,,9,3), where
X
V=IX,l, My,=X
X X
T, = (Ry,in)t, T, = (U, out), (R,, in)1,
R, = {X > XX, +—>e-1,
R, = {X > X, +—-| are right tables.

U = ’X—>§, —>f is an up table.

484 www. tandf. co. uk/journals Progress in Natural Science Vol.17 No.4 2007

The axiom rectangular array M, is initially in
the region 1. When the rules of the table R, are ap-
plied to this array it grows one column in the right
and is then sent to region 2. If R, is applied, then
this array is sent to region 3 where it remains for ever
and the language generated collects this array. If U is
applied to M, in region 2 the array grows upwards
and is sent back to region 1. The derivation then con-
tinues.

The array language generated consists of arrays
of the form in Fig. 3 where the array represents to-
ken L (. is interpreted as blank) with equal “arms”.
This array language belongs to PAP, but it is not in
L (TOLAL) as controlling the application of right
and up tables is not possible in a TOLAS.

XXXXX

Fig. 3. Array describing token L.

(ii) Let
o, =(vV, T, [[2[5l4l5]514150: 05,
Mo, ¢, 8,6.4,79,,7,,9;,79,,95,5)

where

bb
V =1{A,B,a,b!, T = la,bt, M = b b
T, = {(Ry,in),(R,, here) |,

» = {(Ly,in), (L, out)i,

4 (U in), (U,, out)t,

s = 1 (D, 0ut), (D,,in)},

(:75 = i(U:{,here)}) R1 = {b*bA,aéaa%,

g g g
1 (I

R,=1{B-—>b,A—>b,a > al are right tables.
L,=1b-—> Ab,a — aal,
L,=1{A—>b,B—b,a—> al are left tables.
Ul b ,a*’a,A B}y
a a
U,=1a—>a,B— A}
Uy, = {B—b,a — al are up tables.
b a a
D, = {b—» , -, — }
L a’ ¢ a A B
b a a
D, = {b-—» s — . —
2 a “ a A b

are down tables.

The axiom rectangular array is initially in the re-
gion 1. An application of the right table R allows the

array grow one column to the right and the array is
immediately sent to region 2. Here the left table L,
alone is applicable which grows the array in the left
by one column. The array is then sent to region 3
where the up table U, alone is applicable and this al-
lows the array to grow by one row upwards and is
then sent to region 4; if the down table D, is applied
the array grows one row downwards and the array is
sent to region 5. Here the computation comes to an
end with an application of the up table U,, yielding a
rectangular array over terminals and this is collected
in the language L generated. If D, were applied in
region 4, the array grows one row downwards but is
sent out to region 3. Only the up table U, can be ap-
plied without the top row growing but changing B’s
to A. The array is then sent out to region 2 where a-
gain a similar change of symbols happens in the left-
most column. Again the array is sent out to region 1
where an application of the right table R, alone is
possible and the process repeats with an application of
R, and so on. This kind of controlling growth one af-

ter another is not possible in an ECTOLAS. One of
the arrays generated is shown in Figure 4. This
proves that EPAP\ L(ETOLAL)#Q.

baaaab
abaaba
aabbaa
aabbaa
abaaba
baaaab

Fig. 4 An array in L.
Acknowledgement The authors thank the referees for
their very useful comments. The author K. G Subramanian is
grateful to Prof. M. Margenstern, University of Paul Verlaine-
Metz, France, for his invitation and the University for the sup-
port to visit the university during May-June, 2006. Part of this

work was done during this visit.
References

1 Paun Gh. Membrane Computing: An Introduction. Berlin, Hei-
delberg: Springer-Verlag, 2000

2 Ceterchi R, Mutyam M, PZun Gh, et al. Array-rewriting P sys-
tems. Natural Computing, 2003, 2: 229—249

3 Rosenfeld A. Picture Languages. New York: Academic Press,
1979

4 Rosenfeld A and Siromoney R. Picture languages—a survey. [an-
guages of Design, 1993, 1: 229—245

5 Nivat M, Saoudi A, Subramanian KG, et al. Puzzle grammars and
context-free array grammars. Int Journal of Pattern Recognition
and Artificial Intelligence, 1991, 5: 663—676

Progress in Natural Science

Vol.17 No.4 2007 www. tandf. co. uk/journals 485

6 Subramanian KG, Siromoney R, Dare VR, et al. Basic puzzle lan-
guages. Int Journal of Pattern Recognition and Artificial Intelli-
gence, 1995, 9. 763—775

Siromoney R and Siromoney G. Extended controlled tabled L-ar-
rays. Information and Control, 1977, 35(2): 119—138
Subramanian KG, Geethalakshmi M and Helen Chandra P. Array
rewriting P systems generating rectangular arrays. Paper presented
at the National conference on Intelligent Optimization Modeling,
Gandhigram Rural Institute-Deemed University, Gandhigram, In-
dia, March 2006

10
11

12

Subramanian KG, Saravanan R and Rangarajan K. Array P sys-
tems and basic puzzle grammars. Paper presented at the National
conference on Intelligent Optimization Modeling, Gandhigram Ru-
ral Institute-Deemed University, Gandhigram, India, March 2006
Salomaa A. Formal Languages. London: Academic Press, 1973
Yamamoto Y, Morita K and Sugata K. Context-sensitivity of two-
dimensional array grammars. In: Array Grammars, Patterns and
Recognizers. Singapore: World Scientific, 1989, 17—41

Wang PSP. Array Grammars, Patterns and Recognizers. Singa-
pore: World Scientific, 1989

